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LETTER TO THE EDITOR 
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016129, Miami, Florida 33101, USA 

Received 24 October 1989 

Abstract. We determine the role of domain walls travelling along the backbone of an RNA 

double stranded helix in proton exchange events. Our results hold for [polyU.polyA] 
duplexes ( U  and A are bases paired by means of Watson-Crick H-bond interactions). We 
prove that the density of domain walls is increased by the same phonon excitations which 
would enhance proton exchange with the solvent. The identity of the catalytic groups in 
the process is established. 

The design of experiments which would serve as probes for nonlinear excitations along 
nucleic acid chains remains elusive [ 11. Thus, the validity of models for coherent wave 
excitations travelling along the helical macromolecular structures [ 2 , 3 ]  remains an 
open question. In this work we implement a statistical mechanical model for coherent 
solitary-wave excitations which is amenable to experimental testing. The model assesses 
the role of soliton-induced conformational changes in the elucidation of the identity 
of molecular groups responsible for the proton transfer catalytic activity of RNA.  The 
situation requires a theoretical understanding cast in terms of nonlinear temperature- 
dependent collective modes and can be described as follows: certain double-stranded 
RNA species, such as [polyU - polyA] (the pairing between the bases U and A being 
of Watson-Crick type) are capable of exchanging protons with the solvent in a regime 
which is far from denaturation conditions [4]. The puzzling aspect is that the protons 
exchanged with the solvent are precisely those involved in Watson-Crick H-bond 
pairing, suggesting that some sort of pre-melted region or ‘bubble’ within which the 
proton exchange event takes place should occur in the helical structure. These local 
domains seem to be endowed with an abnormally long lifetime (in certain cases of 
the order of seconds) and their very nature remains obscure [ 5 ] .  In this respect, a 
scenario in which some sort of nonlinear excitation is able to concentrate energy in 
localised regions of the helix seems to be suggestive and relevant. However, in order 
to give shape to the idea, we need to implement a model where a topological soliton, 
that is a discommensuration, travelling along the sugar-phosphate backbone is coupled 
to the torsional motion of the bases whose protons become exposed to the solvent 
once the pre-melted region is formed. Thus, our strategy consists in defining a model 
Hamiltonian involving two relevant variables per monomeric unit (a monomeric unit 
comprises a phosphate, a sugar and a base residue). These variables depend on x, the 
contour parameter indicating the position on the chain. They are: ( a )  the pseudorota- 
tional angle U = u ( x ,  t )  which characterises the sugar pucker conformation and ( b )  the 
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torsional angle 4 = 4(x, t ) ,  determining the swinging of the base along the sugar-base 
glycosidic bond, away from the equilibrium position in the pairing. 

The identity of the proton transfer agents within an RNA duplex has not been 
established so far. Nevertheless, we shall argue that the catalytic activity of R N A  can 
be effectively coupled to the kink induced by a soliton, thereby altering the rate of 
proton exchange with the solvent. The relevant catalytic mode for proton exchange 
is displayed in figure 1. The conformational transition between the two sugar puckers 
leads to the activation of the 2’-hydroxyl group and the concomitant formation of the 
alkoxide. This conformational change in the ribose is the discommensuration produced 
by the kink travelling along the chain backbone. A direct inspection of figure 1 reveals 
that the conformational change induces a keto-enol tautomerisation in the uracil (U) 
directly attached to the ribose. In  that way, the soliton is coupled to the exchange of 
the uracil N3-proton with the solvent proton. Several experimental facts [4] support 
the scheme proposed in figure 1. They are: 

0 

C2’ end0 C3‘ rndo 

Figure 1. Coupling of the conformational change in the ribose with a proton exchange 
event involving the labile uracilic proton. The nucleophilic 2’-hydroxyl of the ribose is 
activated due to the interaction between the backbone sugar residue and the base. The 
symbol ‘:B’ denotes the nucleophilic part of a solvent molecule, that is, the region which 
is able to accept a proton from the RNA. 

( a )  the uracil N3-H proton exchanges appreciably faster than the proton for the 
conjugated base; 

( b )  the U base swings out while the conjugated A base remains more or less stacked 
within the duplex; 

( c )  the proton exchange process in the R N A  species is enhanced with respect to 
an analogous process in the DNA duplex [poly(dA) poly(dT)]. Suggestively, the 
activation barrier for interconversion between the two puckers in the R N A  ribose is 
higher than in the DNA deoxyribose [4-61. 

The soliton model in D N A  has been extensively studied [2], however, we would 
like to emphasise that an analogous model for the R N A  species brings up the possibility 
of additional probes. This assertion will be justified once we have proved that it is 
feasible to activate the 2’-hydroxyl of the ribose by means of the soliton, thus confirming 
its direct participation in a proton exchange event. For clarification let us consider 
the O4 model widely used in condensed matter physics. This model is adequate when 
structural phase transitions are inherent to the sugar ring and represent conformational 
changes. In our specific case of interest, the transition is the molecular rearrangement 
CZ’-endo-C3’-endo, modelled by a site-dependent double-welled local potential in the 
variable U. Each of the wells corresponds to a different conformational isomer. When 
the action is given as in the O4 model, large amplitude solutions in the form of solitary 
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kinks reverse the phase of the system. The uniqueness of R N A  resides in that the 
topological soliton has an additional effect which is normally attributed to non- 
topological solitons exclusively engaged in energy transfer. 

In order to explore the theoretical possibilities of these ideas, we shall introduce 
the following model Hamiltonian: 

H,=A,+B,+ V + A , ( t ) =  H + A , ( t ) .  (1) 

In ( l ) ,  the first two terms are Hamiltonians which govern the dynamics of the sugar 
pucker and the swinging of the base respectively. V describes a coupling between 
these two modes and A ,  is an external stochastic field. A,= A,(u) is given by 

dx p(x)?  A B +- u(x)2+- 4 
2 

Here l is the lattice spacing and the contour variable x locates a sugar residue along 
the chain: x = xi = j l ;  c,, is the speed of sound and p(x)  is the momentum conjugate 
of the variable u(x).  The constants A and B determine the quartic potential which 
governs the sugar conformational changes. A is negative and B positive and they are 
chosen so that the depth U = IA2//4B of the local potential wells (U = +U,,) corresponds 
to a barrier of 3 kcal between the two stable sugar configurations U = +uu (C3’-endo) 
and U = -u,(C2’-endo) [ 6 ] .  

Bo is the contribution from the swinging of the base which involves only the torsional 
angle along the glycosidic bond between the base and the sugar pucker. This 
Hamiltonian contains the usual kinetic energy term and an elastic contribution, 
K {&$/ax}’, that represents the stacking of the bases. The elasticity constant K should 
be estimated from the statistical thermodynamics of the separable Hamiltonian made 
up of the first two terms in (1): a reasonable denaturation temperature is obtained 
fixing K at 8 x 

The statistical mechanics which stem from Bo are trivial insofar as only a phononic 
response is plausible. On the other hand, the statistical mechanics stemming from the 
contribution A, may lead to a nonlinear response in the form of a domain wall of 
thickness 2[2]”’5 = L. The parameter 6 determines the familiar form of the soliton 
solution 171 for the dynamics determined by Ao: 

eV deg-’ (cf [ 2 ] ) .  

U = U,, tanh[(x- vr)/2’”6] (3) 

t2= m(c:-u2)/IAI. (4) 

A partition function associated with a Hamiltonian equivalent to A, has been obtained 
by making use of the transfer operator technique [7]. The same technique has been 
implemented by the author to study phase transitions in polymer physics [8]. 

We now consider a far more complicated situation which arises when the coupling 
term V is added to the previous contributions. This term arises from the coupling 
between the conformational change in the sugar and the swinging of the base, as 
suggested by the chemistry depicted in figure 1. Thus, we adopt the following 
expression: 

V =  JuC#J ( 5 )  

where the coupling constant J will be determined once we have elucidated the 
thermodynamics of the full non-separable Hamiltonian HT. This strategy will find its 
justification once we have shown that those phononic excitations which are responsible 
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for the enhancement of the proton-exchange activity are also responsible for increasing 
the density of domain walls. Thus, we shall adjust J to match the bands which have 
been found experimentally to be most favourable in order to enhance the localised 
melting in a helix. 

The stochastic source A,(  t )  is introduced to simulate the full spectrum of an external 
fluctuating field. This field is comprised of extended mode excitations which result 
from random collisions with the solvent molecules and counterions. We adopt for the 
field the general form: 

A,( t )  =I e-'"'A,(w) 
w 

where w is the frequency of a particular extended normal mode. Thus, the contribution 
of each individual Fourier component, A,(w), to the creation of domain walls will be 
assessed. Of particular significance are those wavelengths approaching the actual 
thickness of the domain walls or kinks. 

The dynamics for the full Hamiltonian is probably intractable unless we introduce 
the a priori restriction that the coupling term V can be treated perturbatively. The 
subsequent results will justify this assumption. In order to examine the response of 
the system to the fluctuating field, we shall adopt the density operator representation 
to study the evolution of the system. Denoting by p = p (  t )  the density operator for 
the system, the partition function Q is 

Q = T r p .  ( 7 )  

Since we are interested in the effect of the soliton which propagates in the u-space, 
we find it convenient to introduce the variable a, defined by 

a = T r , p  (8) 

where Tr, denotes the trace operation over the torsional angle variable only. We shall 
present the results of a first-order renormalisation, that is, in the lowest Born approxima- 
tion to the collision superoperators. This procedure gives 

where a, denotes the linear part of a, and the letters with tildes symbolise superoperators 
associated with the corresponding terms in the full Hamiltonian. The lowest Born 
approximation to the collision operator, eo, is given by 

eo(?, {al}) = -Tr+p dT exp(-ifi,T)Vf(BO)(+,(t- 7) (10) ld 
where Ho = A,+ Bo and f ( B o )  = exp(-PBo)/Tr{exp(-PBo)}. 

The last term in (9) is given by 

where f'" is the lowest order term in the expansion of f ( H )  in powers of V. This 
procedure merits a digression. We have assumed throughout the paper that V can be 
treated perturbatively as a contribution of the total Hamiltonian; therefore, a Taylor 
expansion o f f (  H) in powers of V is feasible. 
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At this point we are in a position to analyse the response of the system to the 
generic fluctuating field. For this purpose we find it convenient to introduce the density 
operator s, obtained from c, by substracting the part o f f (  H )  which is V-independent. 
Thus, the norm Is1 measures the nonlinear response as given by the density of the 
one-dimensional gas of domain walls. We could then analyse the dispersion of ( S I  by 
plotting this quantity against w. However, we find it more revealing to plot Is( against 
the wavelength given in units of L (the reader should recall that L is the width of the 
domain wall). The wavelength can be obtained from w since we have already introduced 
the speed of sound in ( 2 ) .  This representation is adopted in figure 2 .  The plot is 
obtained making use of (9) combined with the statistical mechanics for Ho which are 
obtained explicitly from the Q4 model of Krumhansl and Schrieffer [7]. 

Wavelength (L-units) 

Figure 2. Response of the system to the generic fluctuating field. The abscissa is the 
wavelength of the stochastic source and scales with the thickness of the domain walls 
produced in the backbone of R N A .  The ordinate gives the norm of the density operator s. 

The main result which follows after direct inspection of figure 2 is that the phononic 
excitation is most effective in increasing the density of walls when the wavelength gets 
closer to the thickness of the wall. The results suggest that extended modes detectable 
in low-frequency Raman scattering [9] might be effective in enhancing the proton 
exchange activity. In particular, those modes lying in the range 85-100 cm-' are crucial 
for J in the range 2.4-2.8 x eV deg-*. The importance of those bands has been 
emphasised in the context of energy transfer for D N A  transcription [9]. Similarly, the 
progressive melting of interchain secondary structure between replica and template 
during R N A  replication [ 101 demands the participation of nonlinear modes analogous 
to those studied in this work. This follows from the fact that extended mode excitations 
which cause a higher density of domain walls are precisely those responsible for the 
enhancement of bubble formation in helical structures. We interpret such results as 
conclusive evidence in support of the view that a topological soliton is able to induce 
a proton exchange event at the particular site of the kink. The probability of the event 
depends exclusively on the strength of the coupling of the sugar discommensuration 
to the isomerisation of the base. 
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